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The reaction of alkylphenylketenes with the cis-trans isomeric ethyl propenyl ethers in beruonitrile at 

40’ quantitatively produces the cyclobutanones 1’ - 4’ with retention of ketenophile structure. The configum- - - 

tional elucidation by nmr 
2 

allows to deduce the structure of the orientation complexes 1 - $_of the Jr2a +n2;l 

reaction (Table I). The double arrows indicate the incipient 6’ bonds. 

In the preceding communication we have demonstmted that the orientation complex is a good model for 

the transition state and that trans enol ethers choose orientation complexes of type 3 and 4 in which the ketene - - 

substituent is placed between ethoxy ond hydrogen. 
3 

In 1 and 2 the ketene olkyl is in the zone of steric pres- 

sure while it is phenyl in 2 and 4. - - 

With increasing bulk of R the formation of cyclobutanone 2’ from ethyl cis-pmpenyl ether is favored over - 

x,2., the thermodynamically less stable product is always preferred. This is attributed to the increase of van 

der Waals stmin in 1 on varying R from methyl to t-butyl. Whereas ethylphenyl- and pmpylphenylketene use the 

pathways via 1 and 2 to a nearly equal extent, isopropylphenyl- andi-butylphenylketene react only via 2. The __ -- 

predilection for the sterically more crowded cyclobutanone is analogous to the behavior of cyclopentadiene 
4 

and other cis disubstituted ethylenes 
5 

towards mixed ketenes. 

On the other hand, the cycloaddition to the tmns enol ether furnishes predominantly the more stable pro- 

duct via the more favored orientation complex (2 for methyl to pmpyl, ,4 for,isopropyI and t_-butyl). A meoning- - 

ful interpretation of 3 : 4 rests on the assumption that the ketene substituent is located between ethoxy and hy- -- 

dmgen. If methyl and hydrogen of the enol ether were to interact with the ketens substituent in the orthogonal 

armngement, an increase of the ratio 3’ : 4’ should accompany the bmnching l f R in contrast to observation. _- 
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Table I. Orientation Complexes, Pmduct Distribution, Rsrtial Rate Constants (18k2, I * mol-‘set-‘) and 

Activation Free Energies for the C)&additions of Alkylphenylketenes to Ethyl e- and 

in Bennronitrile at 40” 
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100 61 24.41 0 - - 16 - 

90 3.5 26.19 10 0.40 27.54 22 164 

67 2.4 26.42 13 0.35 27 62 27 176 

16 0.022 29.34 65 0.13 26.24 200 

0 - - 100 0.028 29.19 183 

The combination of kinetic data with the stereochemical results allows a quantitative evalution. The 

photometrical addition rate constants for the e- and pmpenyl ether are partitioned according to product 

composition (Table I), i.e 2 kcis = k, + k2, and ktmns = kg+ k4. 

The decrease of k2 and k4 with growing bulk of R cannot have steric reasons because R is pointing out- 

wards and is hence not involved in the steric interaction of ketene and ketenophile substituents in 2 and 4. 
- - 

Pmbably, two electronic factors coopemte in reducing the cycloadditions rate by lifting the ketene LUMO 

energy : the electron release by R (Taft’s d’) as well as the out-of-plane twisting of phenyl increase with 

bmnching of R. 

On varying the alkylphenylketene from methyl to isopropyl one observes thot dG,* increase by 

4 kcal/mol and AG2* only by 1 .O kcal,&rol. With the same electronic deactivation in both series the additio- 

nal 3 kcal/mol in &B,* reflect the greater steric stmin in the tmnsition state on replacing methyl by isopropyl, 
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Analogously, .AGrincreases mom steeply than AG,? 
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In the complexes land 3 the ketone olkyl is oriented toward the interior, the mgion of van der Wools 

mpulsion. The increase of k/k3 from 16 for R = methyl to 27 for propyl mirrors the additional energy consump- 

tion in overcoming the interfemnce of R with ethoxy and hydrogen in 2 compared with thot of R between two 

hydrogens in 1. 

On the other hand, the cis-tmns rote ratio k2+/k4 stays in the mnge of 180 ; i.e., 3.2 kcal/mol om mqui- 

md to conquer the additional steric mpulsion of phony1 between ethoxy and hydrogen in 4 vs. that of phony1 and _- 

two hydtogens in i. The mtio kfi4 does no longer depend an the size of R which juts outwards and, themfom, 

plays no active role in the steric intemction of the substituents in the tmnsition state. As Rends up at the cis 

position to ethoxy in 1’ and at the tmns location in c, the constancy of k2/k4 is only mconciloble with on 

early transition state. 

Ethyl e- ond E-pmpenyl ether having nearly equal free energies,’ the mte ratios k,/k3 and k/k4 

mveol unique steric effects in the tmnsition states. Though the singular pmfemnce for cis 1,2-disubstituted 

ethylenes or ketenophiles is a significant mechanistic criterion, it is not an unequivocal proof for the 

‘lT2a + 
82s 3 process. The findings om also consistent with a concerted pathway [Gs +n2s +rr2s] 7 for 

which a diagonal attack of the ketenophile fl systemon one orbital each of the CC and the CO double bond of 

the ketone is postulated. While the orientation complexes am still diffemnt, the two schemes am becoming vir- 

tually indistinguishable as the mhybridizotion proceeds. 

Appamntly, the cis pmfemnce does not occur in 2+2 cycloadditions via zwitterionic intermediates ; - 

the cyclobutane formation from tetmcyanoethylene and enol ethers may be mgorded as a prototype. 
8 

The m- 

to mtios of TCNE with e- and tmns-l-alkenyl olkyl ethers om close to unity. 
9 
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